

Certification Examination Regulations and Course Discription

This Certification Examination Regulations of the Steinbeis+Academy applies to the following course on the basis of the valid Framework for the Implementation of Certificate Courses (RZLG) in the current version.

Course title	Artificial Intellig	gence - Post Gra	duate Program		
Fields of competences	Management	Personality Development	Education Management	Healthcare	Technology
					х
Place(s) of implementation	Bengaluru (India)				
Graduation	Diploma of Advanced Studies (DAS)	Certificate of Advanced Studies (CAS)	Diploma of Basic Studies (DBS)	Certificate of Basic Studies (CBS)	
	X				
Qualification aim	Students and professionals who are familiar with AI or its implications will leran how to devlop applications in machine learning and artificial intelligence. With the qulification they are able to work as data analyst, business analyst or AI engineer.				
RZLG-Supplementary admission requirement	•		re familiar with A CBS) in artifical in	•	ons on level of
Teaching method	Classroom	Classroom/ Online	Online		
		Х			
Language	English				
Workload in hours	Total	Seminar time	Self-study time	Transfer time	
	330	86	60	184	

Type of performance records (LNW)	Examination (K)	Presentation/ oral examination (P)	Case (C)	Transfer paper (TA)	Project study paper (PSA)
	х			х	

Contents

Modules	Key topics	Seminar time/h
Introduction To Machine Learning	Basic Concept; Train, Test & Validation Distribution; ML Strategy; Computation Graph; Evaluation Metric; Human Level Performance	4
Machine Learning & Scientific Work	Scientific work; methodical approach für data collection and analysis, ML Supervised; Linear Regression; Logistic Regression; Gradient Descent; Decision Tree; Random Forest; Bagging & Boosting; KNN; ML Unsupervised; K-Means; hierarchal Clustering	12
Python Programming	Basic Statistics: Sampling & Sampling Statistics; Hypothesis Testing; Calculus: Derivatives; Optimization; Linear Algebra: Function; Scalar- Vector-Matrix; Vector Operation; Probability: Space; Probability; Distribution	8
Intro To Neural Network & Deep Learning	Introduction: Deep Learning Importance [Strength & Limitation] SP MLP; Feed Forward & Backward Propagation; Neural Network Overview; Neural Network Representation; Activation Function; Loss Function; Importance of Non-linear Activation Function; Gradient Descent for Neural Network	10
Parameter & Hyperparameter	Practical Aspect: Train, Test & Validation Set; Vanishing & Exploding Gradient; Dropout; Regularization; Optimization: Bias Correction; RMS Prop; Adam, Ada, AdaBoost; Learning Rate; Tuning; Softmax	10

Data Processing	Environment: Scikit Learn; NLTK; Spacy & Gensim; OpenCV: Tensorflow; Keras; Text Processing: Representation; Data Cleaning; Data Preprocessing; Similarity; Image Processing: Image; Image Transformation; Filters; Noise Removal; Correlation & Convolution; Edge Detection; Non Maximum Suppression & Hysterisis; Fourier Domain; Video Processing; Speech Data Analytics: Feature Extraction; Image Feature; Descriptors; Object Detection; Detection & Classification	12
CNN	Computer Vision; Padding; Convolution; Pooling; Why Convolution; Deep Convolution Model: Case Studies; Classic Networks; Inception; Open Source Implementation; Transfer Learning; Detection Algorithm: Object Localization; Landmark Detection; Object Detection; Bounding Box Prediction; Yolo; Face Recognition: What is Face Recognition; One Shot Learning; Siamese Network; Triplet Loss; Face Verification; Neural Style Transfer; Deep Conv Net Learning	12
RNN	Why Sequence Model; RNN Model; Back propagation through time; Different Type of RNNs; GRU; LSTM; Bidirectional LSTM; Deep RNN; Word Embedding; Debiasing; Negative Sampling; Elmo & Bert; Beam Search; Attention Model	8
Generative Adversial Network	Autoencoders & Decoders; Adversial Network; Active Learning	4
Reinforcement Learning	Q Learning; Exploration & Exploitation;	6

Assignments-I	Introduction to Machine Learning: Business Case evaluation; Data requirements and collection; Evaluation metrics; Machine Learning; Profit of 50_startups data prediction; Extra marital affair prediction; Fraud data analytics; Fabric sales analysis; Classification of animals data; Crime data analysis using clustering method; and airlines data to obtain optimum number of clusters; Python Programming: Resource Information Analysis; Text Cleaning of Customer reviews using NLP; Image Manipulation (Loading, Rotation etc.); Mathematics Foundation: Sampling & Sampling Statistics; Hypothesis Testing; Calculus Problems; Linear Algebra Problems; Probability Problems; Intro to Neural Network & Deep Learning: Parameter & Hyperparameter; Risk Evaluation; Prediction of claim amount; motor temp prediction; User Behavioral Pattern; (2 ANN assignments+ 2 Parameter and hyperparameters) Data Processing: User review data load and familiarity with data and environment; E commerce Product Similarity; Sentiment classification of movie reviews; Emotion Mining of user reviews; Vehicle edge detection; Cleaning of hand-written digits data; Image data Augmentation; Facial feature detection; Image data wrangling for classification; Video Analysis of a short film; Speech data Analysis w.r.t emotion;	50
Assignments-II	CNN: Ecommerce product image classification; Disease prediction based on images; (2 CNN algorithms): Vehicle identification(Object Detection); Animal Classification(Object Classification); Spatial Image classification (Image segmentation); Face detection; Face recognition (Attendance using facial recognition); RNN: Next word prediction (Vanilla RNN); Twitter data analysis using Named Entity Recognition(NER); Retail data - Word2vec; NER and Forecasting of Oil price prediction; Auto text composer (NER language model); Auto text composer (NER language model); Q and A Chatbot; Real life voice Recognition; Generative: Machine Translation; New Image generation based on existing images; Reinforcement Learning; Game Intelligence	54

Projects	1. Chatbot project: Build end to end chatbot right from data storage schema to final output for a domain; 2. Emotion Analytics: Identifying and analyzing the full spectrum of human emotions including mood, attitude and emotional personality; 3. Object Detection: Detection of objects in images; 4. Face detection from CC camera feed: Analysis of video feed from CC cameras	80
----------	--	----